翻訳と辞書
Words near each other
・ Single-strand DNA-binding protein
・ Single-stranded binding protein
・ Single-stream recycling
・ Single-striped grass mouse
・ Single-stroke
・ Single-subject
・ Single-subject design
・ Single-subject research
・ Single-subject rule
・ Single-suit squeeze
・ Single-system recording
・ Single-track railway
・ Single-track road
・ Single-track vehicle
・ Single-tranche CDO
Single-unit recording
・ Single-unit smooth muscle
・ Single-use bioreactor
・ Single-use zoning
・ Single-valued function
・ Single-vault station
・ Single-vehicle crash
・ Single-walled carbon nanohorn
・ Single-window system
・ Single-wing formation
・ Single-wire earth return
・ Single-wire transmission line
・ Single-word modifier
・ Singleborough
・ Singled Out


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Single-unit recording : ウィキペディア英語版
Single-unit recording

In neuroscience, single-unit recordings provide a method of measuring the electro-physiological responses of single neurons using a microelectrode system. When a neuron generates an action potential, the signal propagates down the neuron as a current which flows in and out of the cell through excitable membrane regions in the soma and axon. A microelectrode is inserted into the brain, where it can record the rate of change in voltage with respect to time. These microelectrodes must be fine-tipped, high-impedance conductors; they are primarily glass micro-pipettes or metal microelectrodes made of platinum or tungsten. Microelectrodes can be carefully placed within (or close to) the cell membrane, allowing the ability to record intracellularly or extracellularly.
Single-unit recordings are widely used in cognitive science, where it permits the analysis of human cognition and cortical mapping. This information can then be applied to brain machine interface (BMI) technologies for brain control of external devices.
==Overview==
There are many techniques available to record brain activity—including electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI)—but these do not allow for single-neuron resolution. Neurons are the basic functional units in the brain; they transmit information through the body using electrical signals called action potentials. Currently, single-unit recordings provide the most precise recordings from single neurons. A single unit is defined as a single, firing neuron whose spike potentials are distinctly isolated by a recording microelectrode.〔
The ability to record signals from neurons is centered around the electric current flow through the neuron. As an action potential propagates through the cell, the electric current flows in and out of the soma and axons at excitable membrane regions. This current creates a measurable, changing voltage potential within (and outside) the cell. This allows for two basic types of single-unit recordings. Intracellular single-unit recordings occur within the neuron and measure the voltage change (with respect to time) across the membrane during action potentials. This outputs as a trace with information on membrane resting potential, postsynaptic potentials and spikes through the soma (or axon). Alternatively, when the microelectrode is close to the cell surface extracellular recordings measure the voltage change (with respect to time) outside the cell, giving only spike information. Different types of microelectrodes can be used for single-unit recordings; they are typically high-impedance, fine-tipped and conductive. Fine tips allow for easy penetration without extensive damage to the cell, but they also correlate with high impedance. Additionally, electrical and/or ionic conductivity allow for recordings from both non-polarizable and polarizable electrodes. The two primary classes of electrodes are glass micropipettes and metal electrodes. Electrolyte-filled glass micropipettes are mainly used for intracellular single-unit recordings; metal electrodes (commonly made of stainless steel, platinum, tungsten or iridium) and used for both types of recordings.〔
Single-unit recordings have provided tools to explore the brain and apply this knowledge to current technologies. Cognitive scientists have used single-unit recordings in the brains of animals and humans to study behaviors and functions. Electrodes can also be inserted into the brain of epileptic patients to determine the position of epileptic foci.〔 More recently, single-unit recordings have been used in brain machine interfaces (BMI). BMIs record brain signals and decode an intended response, which then controls the movement of an external device (such as a computer cursor or prosthetic limb).〔

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Single-unit recording」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.